

June 2011

Abstract

Circulating tumor cells Background: (CTC) offer the potential for serially monitoring the molecular profile of a tumor. However, enrichment techniques provide a level of purity problematic for most molecular analysis methods, and do not readily provide for analysis of tumor cell heterogeneity. We evaluate the use of DEPArray[™] (Silicon Biosystems), an automated system enabling image-based cell sorting with single-cell resolution, for CTC isolation and characterization from enriched blood samples.

Methods: Experiments were carried out with healthy-donor blood (HB) collected in CellSave tubes, spiked with tumor cells (TC) and enriched on Veridex's AutoPrep with the CellSearch[®] Epithelial Cell Kit. DEPArray[™] system was used for detection and multiple recoveries of single TCs (or control WBCs) and 5 cell batches. comparison blind of with Veridex's enumeration results CellTracks Analyzer II[®] (CTAII) was carried out on replicate samples.

Results: No TCs were detected among negative controls (n=10). TC count (normalized to sample volume analyzed) was compared sample-wise for each replicate (n=20): DEPArray/CTAII count was, on average, 100% (standard deviation = 52%). Enriched mixtures of Her2+ and Her2- TCs spiked in HB samples (n=5), were sorted by DEPArray and recovered into separate tubes. By phenotypical re-analysis no Her2+ cells were detected among the Her2- cell fraction and vice versa, neither were donor WBCs found (100% purity). KRASmutated, A549 cells spiked in HB were enriched and loaded on DEPArray. Individual fractions containing either 1 to 5 tumor cells or donor WBCs were Genome Amplification Whole (*Ampli*1[™] WGA, Silicon Biosystems), KRAS specific gene amplification and Capillary Electrophoresis sequencing carried out. TCs successfully were amplified showed only mutated KRAS, (WBCs were only wild-type).

Conclusions: DEPArray[™] achieved 100% purity, eliminating all white blood cells (WBC), in the isolation of a mixed population cell lines of tumor downstream of CellSearch[®] enrichment. This enabled molecular profiling of pure tumor cells from whole blood spiked tumor cell lines. Detection of molecular heterogeneity of tumor cells is demonstrated through KRAS sequencing

Use of the DEPArray platform to detect, isolate, and molecularly characterize pure tumor cells from peripheral blood samples enriched using the CellSearch[®] system

G Medoro¹, S Gross², N Manaresi¹, M Sergio¹, F Fontana¹, S Gianni¹, A Calanca¹, E Peruzzi¹, M Banzi¹, G Signorini¹, C Rao², J Patel³, J Karkera³, G Giorgini¹, M Mata³ and M C Connelly² ¹Silicon Biosystems Spa, Bologna, Italy ²Veridex, LLC, Huntingdon Valley, PA ³Centocor, Radnor, PA

Spiking of SW480, A549, or mix of the two, CellSave Tube

Molecular characterization for purity and mutational status

Across four Spiking experiments of viable (>90%) KRAS mutated cell lines (SW480 n=2, A549 n=1, mix SW480/A549 n=1) in HB, multiple recoveries (range 12-21 per experiment) of individual cells (n=56), 5 cell batches (n=5), or negative controls (n=8) were carried out. Ampli1[™] WGA kit (Silicon Biosystems) products from each tube were DNA-fingerprinted (home-brewn 11 loci multiplex reaction, to confirm cell presence, identity and purity) and KRAS gene-specific amplification products were sequenced (on ABI 3730xl). In 91% (51/56) of single cell recoveries, cell presence was confirmed. The 5 tubes with no signal from STR and KRAS suggests that the cell has been removed during surnatant removal before WGA. All successfully amplified cells matched 100% KRAS mutational status and DNA fingerprint, no signals was detected in negative controls recoveries (buffer only). In the mixed tumor cells experiment, different KRAS mutations (and DNA fingerprints) were detected in different tumor cell recoveries, reflecting cell heterogeneity.

Abstract #10616

Cells (Normalized)							
V-HV	V-EU	SB	SB/EU	(EU+SB)/2			
12	12	12	97%	99%			
12	9	13	150%	88%			
94	91	25	27%	62%			
10	3	6	194%	43%			
12	16	9	56%	107%			
9	7	5	74%	64%			
117	115	61 53%		75%			
132	105	78 74%		69%			
93	83	45	54%	69%			
69	65	60	93%	90%			
102	103	85	82%	92%			
48	27	55	202% 97%	85%			
159	146	142		90%			
162	71	150	211%	68%			
66	59	48	82%	81%			
44	41	38	92%	91%			
44	31	22	71%	59%			
62	70	46	66%	93%			
78	57	57	100%	73%			
80	73	90	123%	102%			
Table 1		mean	100%	80%			
		std-dev	52%	16%			

© 9
9
0
٢
0
0

	Sorted by		Analyzed by CTAII			
	DEPArray [™]		(V-HV)			
Replicate	(SB)		Her2-	Her2+	Purity	
1	Her2-	50	28	0	100%	
	Her2+	47	0	17	100%	
2	Her2-	6	3	0	100%	
	Her2+	27	0	16	100%	
3	Her2-	17	7	0	100%	
	Her2+	26	0	16	100%	
4	Her2-	5	1	0	100%	
	Her2+	11	0	6	100%	
5	Her2-	8	5	0	100%	
	Her2+	16	0	11	100%	